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1. A complex function

f(z) = a1z + a2z
2 + · · · , a1 ̸= 0, (1)

holomorphic in the unit disk C1 = {z : |z| < 1}, is called close-to-convex if there exists a
function g(z) = b1z + b2z

2 + · · · , b1 ̸= 0, univalent and convex in C1 such that

Re
f ′(z)

g′(z)
> 0, |z| < 1. (2)

This conditions are fulfilled, then the function f must be univalent in D and

Re

{
1 +

zg′′(z)

g′(z)

}
> 0, |z| < 1. (3)

Close-to-convex functions were introduced in the theory of univalent functions by Kaplan in
1952 [3, p.169]. Z. Lewandowski noted that the notion of close-to-convex functions was defined
already in 1936 by M. Bienacki [2] as a linearly accessible function. A function f of the form
(1) is called linearly accessible if the complementary set of f(C1) in the plane can be covered
by the closed half-lines do not intersect in pairs, which means that a point which belongs to
two distinct half-lines must be the end point of at least one of them.

However, Lewandowski has shown that any linearly accessible functions are close-to-convex
[4], and conversely, every close-to-convex functions are linearly accessible [5]. The proof of
this last theorem, given in [5], is quite long and painful. The purpose of this note is to give
another demonstration shorter, based on a simple principle that we used in [1].

2. Suppose that f is a function of the form (1) close-to-convex in D and set

F (z, t) = f(z) + tzg′(z)

for z ∈ D and t ∈ [0,∞). Since

∂zF (z, t)

g′(z)
=
z∂zF (z, t)

∂tF (z, t)
=
f ′(z)

g′(z)
+ t

[
1 +

zg′′(z)

g′(z)

]
,

it follows from (2) and (3) that the function F (z, t) is close-to-convex univalent in D for any
fixed t ∈ [0,∞), and in addition, we have Re z∂zF (z, t)/∂tF (z, t) > 0 for all z ∈ D and
t ∈ [0,∞)1, the following property of the function F is obtained (cf. [1, p.47]):

Property 1. If ρ ∈ (0, 1) and t1 ≤ t2, and if Cρ = {z : |z| < ρ}, then the domain F (Cρ, t1) =
{ζ : ζ = F (z, t1), |z| ≤ ρ} is contained in the domain F (Cρ, t2).

3. Fix an integer n ≥ 2 and assume that

r = 1− 1

n
, fn(z) = f(rz). (4)

1This condition is interpreted as follows: When the paprameter t increases, the boundary curve of
f(Cρ, t), ρ ∈ (0, 1), moves so that the direction of the instantaneous velocity of any points P of the curve
forms an acute angle with the conducted outside the normal curve (vector) at point P . Thus widening the
domain F (Cρ, t) as t increases.
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It is seen that for t ≥ 0
Γ(t) = {ζ : ζ = F (reiθ, t), θ ∈ [0, 2π)}

is a simple curve which is the boundary of the domain F (Cr, t), while all

ℓ(θ) = {ζ : ζ = F (reiθ, t), t ≥ 0}, θ : fixed
is a closed half-line whose endpoint is f(reiθ) = fn(e

iθ) is located on the boundary curve Γ(0)
of the domain fn(C1).

Suppose 0 ≤ |θ − σ| < 2π and the half-lines ℓ(θ) and ℓ(σ) have a common point

ζ = F (reiθ, t) = F (reiσ, s).

The function F (z, t) is univalent for any fixed t ≥ 0 and t ̸= s. But this leads to a
contradiction, because in this case one curve Γ(t) or Γ(s) must be contained in the interior
of the other, under Property 1. We have shown that for θ ∈ [0, 2π), the half-lines ℓ(θ) are
disjoint in pairs. Note also none of the rays ℓ(θ) may pass through the points contained in the
interior of the curve Γ(0), if a ray ℓ(θ) should cut the curve at a point f(reiτ ), where τ ̸= θ,
which would be the endpoint of another half-line ℓ(τ).

4. Now fix a point ζ located outside the circle Γ(0), and denote by ψ(θ) the angle between
the real axis and the ray m(θ) from the point f(reiθ) and passing through the point ζ, and
φ(θ) is the angle between the real axis and the ray ℓ(θ). However, under the definition of ℓ(θ),
φ(θ) = arg ∂tF (re

iθ) = arg{reiθg′(reiθ)}.
But the function g is convex and therefore increases with the angle φ(θ) and θ and φ(θ +

2π) = φ(θ)+2π. On the other hand, because of ψ(θ+2π) = ψ(θ), ζ is located on the contour
(boundary?) Γ(0). So the increase of the angle χ = φ(θ)−ψ(θ) corresponding to the increase
2π of the parameter θ is equal to 2π, and therefore, there is a real number θ0 and an integer
k such as χ(θ0) = 2πk; but this means that the ray ℓ(θ0) = m(θ0) passes through the point ζ.

We have demonstrated the lines ℓ(θ), where θ ∈ [0, 2π) cover all the points outside the
contour Γ(0) limiting the domain fn(C1) = f(Cr). Points belonging to the same time range
are the origins of rays ℓ(θ) and in Section 3 we found that these rays do not intersect each
other. So the function fn(z) is linearly accessible from the definition due to Bienacki, and
this result is obviously true for n = 2, 3, · · · .

According to (4), the sequence of functions {fn} converges uniformly to the function f in
any circle Cρ, where ρ ∈ (0, 1), and these functions are linearly accessible. Under a theorem
of Bienacki that is enough for the limit function f is also linearly accessible, which completes
our proof.
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